COMS 218 - Discrete Structures Course Outline

Approval Date: 03/11/2021 **Effective Date:** 08/13/2021

SECTION A

Unique ID Number CCC000623853 Discipline(s) Computer Science Mathematics Division Career Education and Workforce Development Subject Area Computer Studies

Distance Education Mode of On-Campus Instruction Hybrid Entirely Online Online with Proctored Exams

SECTION B

General Education Information:

SECTION C

Course Description

Repeatability May be repeated 0 times

Catalog This course will introduce the discrete structures used in Computer Science, **Description** with an emphasis on their applications. Topics covered include: Functions, Relations and Sets; Basic Logic; Proof Techniques; Basics of Counting; Graphs and Trees; and Discrete Probability.

Schedule Description

SECTION D

Condition on Enrollment

1a. Prerequisite(s)

COMS 215

1b. Corequisite(s): None

1c. Recommended

MATH 108

1d. Limitation on Enrollment: None

SECTION E

Course Outline Information

1. Student Learning Outcomes:

A. Explain the relationship between mathematical induction and heatin wi an/48(a)-8(t)17(i)-t

- B. Basic Logic
 - a. Propositional logic
 - b. Logical connectives
 - c. Truth tables
 - d. Normal forms (conjunctive and disjunctive)
 - e. Validity
 - f. Predicate logic
 - g. Universal and existential quantification
 - h. Modus ponens and modus tollens
 - i. Limitations of predicate logic
- C. Proof Techniques
 - a. Notions of implication, converse, inverse, contrapositive, negation, and contradiction
 - b. The structure of mathematical proofs
 - c. Direct proofs
 - d. Proof by counterexample
 - e. Proof by contradiction
 - f. Mathematical induction
 - g. Strong induction
 - h. Recursive mathematical definitions
 - i. Well orderings
- D. Basics of Counting
 - a. Counting arguments
 - b. Sum and product rule
 - c. Inclusion-exclusion principle
 - d. Arithmetic and geometric progressions
 - e. Fibonacci numbers
 - f. The pigeonhole principle

induction to recursion and recursively defined structures. **Projects: Online Adaptation:** Discussion

1. Methods of Evaluation: Describe the general types of evaluations for this course and provide at least two, specific examples.

Typical classroom assessment techniques

Exams/Tests --

Quizzes -- The student will be quizzed on the different traversal methods for trees and graphs.

Home Work -- Students will describe how formal tools of symbolic logic are used to model real-life situations, including those arising in computing contexts such as program correctness, database queries, and algorithms.

Final Exam -- In the final exam, the student will apply the binomial theorem to independent