- f. Gravity near the earth's surface; geophysical applications
- g. Satellites and "weightlessness"
- h. Kepler's laws and Newton's synthesis
- F. Work and Energy
 - a. Work done by a constant force
 - b. Work done by a varying force
 - c. Kinetic energy and the work-energy principle
 - d. Potential energy
 - e. Conservative and non-conservative forces
 - f. Mechanical energy and its conservation
 - g. Problem solving using conservation of mechanical energy
 - h. Other forms of energy; energy transformations and the law of conservation of energy
 - i. Energy conservation with dissipative forces: solving problems
- G. Linear Momentum
 - a. Momentum and its relation to force
 - b. Conservation of momentum
 - c. Collisions and impulse
 - d. Conservation of energy and momentum in collisions
 - e. Elastic collisions in one dimension-solving problems using energy and momentum conservation
 - f. Elastic collisions in two or three dimensions
 - g. Inelastic collisions
 - h. Center of mass
 - i. Center of mass and translational motion
- H. Rotational Motion
 - a. Angular quantities
 - b. Kinematic equations for uniformly accelerated rotational motion
 - b. Torque gliees and glieif
 - d. Rotational dynamics; torque and rotational inertia
 - e. Rotational kinetic energy
 - f. Angular momentum and its conservation
- I. Bodies in Equilibrium: Elasticity and Fracture
 - a. Statics-the study of force 291.55 Tm0 g 9()17Fr-8(2-8(u)34(a)38()48()58()34()14()3u)8(r

- j. Viscosity
- k. Flow in tubes: Poiseuille's equation, blood flow, Reynolds number
- I. Object moving in a fluid; sedimentation and drag
- m. Surface tension and capillarity
- n. Pumps; the heart and blood pressure
- K. Vibrations and Waves
 - a. Simple harmonic motion
 - b. Energy in the simple harmonic oscillator
 - c. Vertical spring derivations
 - d. The reference circle: the period and sinusoidal nature of SHM
 - e. The simple pendulum
 - f. Damped harmonic motion
 - g. Forced vibrations; resonance
 - h. Wave motion
 - i. Types of waves
 - j. Energy transported by waves
 - k. Reflection and interference of waves
 - I. Standing waves; resonance
 - m. Refraction and diffraction
- L. Sound
 - a. Characteristics of sound
 - b. Intensity of sound
 - c. Intensity related to amplitude and pressure amplitude
 - d. The ear and its response; loudness
 - e. Sources of sound: vibrating strings and air columns
 - f. Quality of sound, and noise
 - g. Interference of sound waves; beats
 - h. Doppler effect
 - i. Shock waves and the sonic boom
 - j. Applications; ultrasound and medical imaging

M. Temperatures and Kinetic Theory

- a. Atoms
- b. Temperature
- c. Thermal equilibrium and the zeroth law of thermodynamics
- d. Thermal expansion
- e. Thermal stresses
- f. The gas laws and absolute temperature
- g. The ideal gas law
- h. Problem solving with the ideal gas law
- i. Ideal gas law in terms of molecules: Avogadro's number
- j. Kinetic theory and the molecular interpretation of temperature
- k. Distribution of molecular speeds
- I. Real gases and changes of phase
- m. Vapor pressure and humidity
- n. Diffusion
- N. Heat
 - a. Heat as energy transfer
 - b. Distinction between temperature, heat, and internal energy
 - c. Internal energy of an ideal gas
 - d. Specific heat
 - e. Calorimetry-solving problems

- Daily reading assignments in the two texts listed above are required.
- Chapter problem assignments in "Physics" are required weekly.
 Written laboratory reports are required every week.
- C. Other Assignments

7. Required Materials

A. EXAMPLES of typical college-level textbooks (for degree-applicable courses) or other print materials.

Book #1: Author:

Title:

Walker, James Physics